

HYDRAULIC FRACTURING

BAKKEN SAFETY TOUR 2016
AUGUST 31 - SEPTEMBER 2

Ron Gusek

Vice President, Technology and Development
Liberty Oilfield Services
UNITED STATES

Outline

Vorteq Manifold Trailer

- Current Challenges & Improvements-to-Date
- Isobaric Pressure Exchanger & New Missile
- Operational Changes
- Yard & Field Testing
- Anticipated Benefits

The "Quiet Fleet"

- Noise Exposure Regulations and Reality
- Benefits of the Quiet Fleet
- Some Basics About Sound
- The Final Product

Questions

Some Things Change, Some Things Stay the Same

Current Challenges

- Low viscosity fluids w/ proppant
- High pumping rates
- High treating pressures

lead to

- Wear/erosion of various pump components
- Increased R&M costs
- Reduced efficiency in fracturing operations
- Work in the "Red Zone"

The "Red Zone"

- The "red zone" is the area of high pressure operations during a hydraulic fracture treatment
- Minimize # of people and amount of time in "red zone" to minimize risk

Improvements to Date

Mechanical Improvements

- Flow geometry changes
- Metallurgy changes

Operational workarounds

Split stream fracturing

Isobaric Pressure Exchanger (PX)

- Free spinning rotor driven by fluid flow
- Pressure transfer from one fluid stream to another via positive displacement
- Bearing support in the form of a hydrodynamic film between the rotor and the sleeve/endcaps

Isobaric Pressure Exchanger (PX)

- Manufactured from tungsten carbide
 - Abrasion resistant
 - Structural integrity
 - High stiffness
- Rated to service pressures > 15,000 psi
- Efficiency >95%
- Mixing levels of ~3%
- 5 to 8 bpm per PX

Manifold Trailer

- 10 station manifold trailer
- Isolation valves at each PX
- 2 high pressure manifolds
- 3 low pressure manifolds
- Instrumented with flowmeters, pressure and temperature sensors, valve position sensors and RPM sensors

Fluid Flow Path — Current Manifold Trailer

- 1. Water tanks
- 2. Hydration unit (if required)
- 3. Blender
- 4. Low pressure manifold on missile
- 5. Reciprocating plunger pumps
- 6. High pressure manifold on missile
- 7. Wellhead

Fluid Flow Path – New Manifold Trailer

- 1. Water tanks
- 2. Boost pump skid
- 3. Low pressure manifold #1 on missile
- 4. Reciprocating plunger pumps
- 5. High pressure manifold #1 on missile
- 6. Pressure Exchanger
- 7. Low pressure manifold #2 on missile
- 8. Proportioning skid
- 9. Hydration unit (if required not shown)
- 10.Blender
- 11.Low pressure manifold #3 on missile
- 12. Pressure Exchanger
- 13. High pressure manifold #2 on missile
- 14.Wellhead

PX Operations

- 95% efficient w/ 3% mixing
- Manage excess fluid
 - Return to tank (may need to remove proppant)
 - Pressurize and pump downhole (dilution)

Yard & Field Testing

- Validated control system and proportionate flow device
- Static pressure tests to 10,000 psi and pumping operations to 7,250 psi
- Stable operation of PX devices
- Resolved issue with overconstrained system
- Utilized prototype missile on Bakken frac location (Dec 2015)
- Testing with gelled fluid systems underway

Anticipated Benefits

- Improved safety and operating conditions
- Reduction in R&M costs, and specifically consumable parts
- Less NPT = Increased efficiency
- Less redundant equipment on location
- Opportunity to use high pressure multi-stage centrifugal pumps

Occupational & Community Noise Exposure

- Actionable limit is TWA of 85 dBa over an 8 hour period
- No regulations governing employee protection against noise measured on the C-weighted scale
- Community noise is commonly measured in equivalent continuous sound pressure levels
- Commonly expressed as DNL (Day-Night Average Sound Level)
 - Daytime Average Sound Level (7am 10pm)
 - Nighttime Average Sound Level (10pm 7am)
- Common recommended DNL is 55 dBa (EPA)
- Community noise ordinances commonly based on A-scale, but public concern about C-scale noise is growing

COGCC Noise Zone Regulations

Zone	7:00 am to next 7:00 pm	7:00 pm to next 7:00 am
Residential/Ag./Rural	55 dB(A)	50dB(A)
Commercial	60 dB(A)	55dB(A)
Light Industrial	70 dB(A)	65dB(A)
Industrial	80 dB(A)	75dB(A)

- In response to a specific complaint, COGCC requires that noise measurements be taken 350 feet from the source
- For C-scale noise, readings >65dBC at a distance 25 feet from a residence require further action to reduce low frequency noise

Hydraulic Fracturing and the Community

- Today's hydraulic fracturing operations are more environmentally friendly
 - Dual Fuel Fleets have lower emissions
 - Newer proppant transport systems generate less dust with less silicosis risk
 - Greener chemicals are used with more disclosure of what is pumped
 - Pad operations minimize land use
- Noise generated during 24/7 operations can be an issue when operating near to communities and homeowners
- The Quiet Fleet[™] will dramatically reduce frac spread noise down to about the level generated by the few electric fleets available today. It generates less noise at a distance of 500' from the center of a frac location than a conventional fleet would generate from 1000' away

Benefits of the Quiet Fleet Technology

- It's important to be a good neighbor
- Reduced fatigue and stress levels of onsite personnel
- Operational flexibility for E&P companies
 - Reduced setback distances while meeting noise compliance requirements
- May reduce or eliminate the need for sound walls specific to noise mitigation issues

First - Some Definitions

Volume vs pressure vs intensity

- Doubling of the <u>volume</u> (loudness) should be sensed as a level difference of +10 dB – acousticians say.
- Doubling the <u>sound pressure</u> (voltage) corresponds to a <u>measured level</u> change of +6 dB
- Doubling of sound <u>intensity</u> (acoustic energy) results in a <u>calculated level</u> change of +3 dB.

Some Definitions (cont'd)

- Compared with total dB, A-weighted measurements (dBA scale) underestimate the perceived loudness, annoyance factor, and stress-inducing capability of noises from low frequency components, especially at moderate and high volumes of noise. dBA is currently the reference scale used for most measurements of sound
- Another system of adjustment is C-weighting, the dBC scale. dBC is sometimes used for specifying peak or impact noise levels, such as gunfire. Unweighted dB readings are also used for this purpose; there is usually not much difference between the two.

Common Noise Levels

INDOORS	Noise Level (dBa)	<u>OUTDOORS</u>
Rock Band	110	
	100	Widebody Aircraft Departure Flyover(@ 1000 ft)
Inside Subway Train (New York)	90	Gas lawnmower (@ 3 ft)
Food Blender (@ 3 ft)	80	Diesel Truck(@ 50 ft) Noisy Urban Daytime
Vacuum Cleaner (@ 10 ft)	70	Conventional Frac Fleet(@ 500 ft) Gas lawnmower (@ 100 ft)
Speech (@ 3 ft) Large Business Office	60	Liberty Quiet Fleet™ (@ 500 ft)
	50	Liberty Quiet Fleet™ (@ 1000 ft)
Small Theatre	40	Quiet Urban Nighttime
Library	30	Quiet Suburban Nighttime
Concert Hall (Background)	20	Quiet Rural Nighttime
	10	
Threshold of Hearing	10	

Current Mitigation Strategies

Offset Distance

 A doubling of distance reduces the sound pressure level by 6dB

Sound Walls

Electric equipment

Single Frac Pump Measurements

Standard Pump 95-100dBA adjacent to pump Quiet Fleet Prototype 75-80dBA adjacent to pump

Noise Modeling from Behrens and Associates

Standard 12 Pump Caterpillar Fleet 70-75 dBA at 500' (between a running shower and a toilet flushing in acoustic energy)

Quiet Fleet 12 Pump Fleet Est 55-60 dBA at 500' (between light traffic and conversational speech in acoustic energy)

Attachment 2
Frac Fleet Unmitigated Noise Contour Map (dBA)

Noise Modeling from Behrens and Associates

Standard 12 Pump Caterpillar Fleet 75-80 dBC at 500' (between a toilet flushing and an alarm clock in acoustic energy)

Quiet FLeet 12 Pump Fleet Est 65-70 dBC at 500' (between conversational speech and a running shower in acoustic energy)

The Final Product

- 3X quieter than a conventional fleet
- On-site noise levels below PEL
- 3-stage fire suppression system on each pump, blender and hydration unit
- Reduction achieved at moderate cost increase over traditional fleet
- Existing equipment can be retrofit

Questions?

